33.2.3 problem Problem 11.46

Internal problem ID [7807]
Book : Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014
Section : Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supplementary Problems. page 101
Problem number : Problem 11.46
Date solved : Tuesday, September 30, 2025 at 05:05:45 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=4 \cos \left (x \right ) \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = 4*cos(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 x +c_2 \right ) {\mathrm e}^{x}-2 \sin \left (x \right ) \]
Mathematica. Time used: 0.01 (sec). Leaf size: 21
ode=D[y[x],{x,2}]-2*D[y[x],x]+y[x]==4*Cos[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -2 \sin (x)+e^x (c_2 x+c_1) \end{align*}
Sympy. Time used: 0.105 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 4*cos(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) e^{x} - 2 \sin {\left (x \right )} \]