33.2.5 problem Problem 11.48

Internal problem ID [7809]
Book : Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014
Section : Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. Supplementary Problems. page 101
Problem number : Problem 11.48
Date solved : Tuesday, September 30, 2025 at 05:05:46 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=x \,{\mathrm e}^{x} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = x*exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (c_2 +c_1 x +\frac {1}{6} x^{3}\right ) \]
Mathematica. Time used: 0.012 (sec). Leaf size: 25
ode=D[y[x],{x,2}]-2*D[y[x],x]+y[x]==x*Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{6} e^x \left (x^3+6 c_2 x+6 c_1\right ) \end{align*}
Sympy. Time used: 0.124 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*exp(x) + y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x \left (C_{2} + \frac {x^{2}}{6}\right )\right ) e^{x} \]