Internal
problem
ID
[7846]
Book
:
Schaums
Outline
Differential
Equations,
4th
edition.
Bronson
and
Costa.
McGraw
Hill
2014
Section
:
Chapter
27.
Power
series
solutions
of
linear
DE
with
variable
coefficients.
Supplementary
Problems.
page
274
Problem
number
:
Problem
27.28
Date
solved
:
Tuesday, September 30, 2025 at 05:06:16 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=(1+x)*diff(diff(y(x),x),x)+1/x*diff(y(x),x)+x*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(1+x)*D[y[x],{x,2}]+1/x*D[y[x],x]+x*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x) + (x + 1)*Derivative(y(x), (x, 2)) + Derivative(y(x), x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)