Internal
problem
ID
[7853]
Book
:
Schaums
Outline
Differential
Equations,
4th
edition.
Bronson
and
Costa.
McGraw
Hill
2014
Section
:
Chapter
27.
Power
series
solutions
of
linear
DE
with
variable
coefficients.
Supplementary
Problems.
page
274
Problem
number
:
Problem
27.41
Date
solved
:
Tuesday, September 30, 2025 at 05:06:20 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
Using series method with expansion around
Order:=6; ode:=(x^2-1)*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(x^2-1)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) + (x**2 - 1)*Derivative(y(x), (x, 2)) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)