34.2.2 problem 25

Internal problem ID [7867]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 4. Equations of first order and first degree (Variable separable). Supplemetary problems. Page 22
Problem number : 25
Date solved : Tuesday, September 30, 2025 at 05:07:14 PM
CAS classification : [_separable]

\begin{align*} 1+2 y+\left (-x^{2}+4\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 18
ode:=1+2*y(x)+(-x^2+4)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {1}{2}+\frac {\sqrt {x -2}\, c_1}{\sqrt {x +2}} \]
Mathematica. Time used: 0.077 (sec). Leaf size: 73
ode=(1+2*y[x])+(4-x^2)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \exp \left (\int _1^x\frac {2}{K[1]^2-4}dK[1]\right ) \left (\int _1^x\frac {\exp \left (-\int _1^{K[2]}\frac {2}{K[1]^2-4}dK[1]\right )}{K[2]^2-4}dK[2]+c_1\right )\\ y(x)&\to -\frac {1}{2} \end{align*}
Sympy. Time used: 0.193 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((4 - x**2)*Derivative(y(x), x) + 2*y(x) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} \sqrt {x - 2}}{\sqrt {x + 2}} - \frac {1}{2} \]