34.2.11 problem 35

Internal problem ID [7876]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 4. Equations of first order and first degree (Variable separable). Supplemetary problems. Page 22
Problem number : 35
Date solved : Tuesday, September 30, 2025 at 05:07:39 PM
CAS classification : [_separable]

\begin{align*} x y+\left (x^{2}+1\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 13
ode:=(x^2+1)*diff(y(x),x)+x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1}{\sqrt {x^{2}+1}} \]
Mathematica. Time used: 0.019 (sec). Leaf size: 22
ode=(x*y[x])+(1+x^2)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1}{\sqrt {x^2+1}}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.141 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x) + (x**2 + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{\sqrt {x^{2} + 1}} \]