4.16.1 Problems 1 to 26

Table 4.1153: Higher order, non-linear and non-homogeneous

#

ODE

Mathematica

Maple

Sympy

3498

\[ {} 2 y y^{\prime \prime \prime }+2 \left (3 y^{\prime }+y\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} = \sin \left (x \right ) \]

6761

\[ {} y^{2}-2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = x^{3} \]

6803

\[ {} y^{2}-\left (1-2 x y\right ) y^{\prime }+x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = f \left (x \right ) \]

6816

\[ {} {y^{\prime }}^{3} y^{\prime \prime \prime } = 1 \]

6817

\[ {} y^{\prime \prime } y^{\prime \prime \prime } = 2 \]

6819

\[ {} 2 x y^{\prime \prime } y^{\prime \prime \prime } = -a^{2}+{y^{\prime \prime }}^{2} \]

6820

\[ {} 1-{y^{\prime \prime }}^{2}+2 x y^{\prime \prime } y^{\prime \prime \prime }+\left (-x^{2}+1\right ) {y^{\prime \prime \prime }}^{2} = 0 \]

8069

\[ {} \left (1+2 y+3 y^{2}\right ) y^{\prime \prime \prime }+6 y^{\prime } \left (y^{\prime \prime }+{y^{\prime }}^{2}+3 y y^{\prime \prime }\right ) = x \]

8070

\[ {} 3 x \left (y^{2} y^{\prime \prime \prime }+6 y y^{\prime } y^{\prime \prime }+2 {y^{\prime }}^{3}\right )-3 y \left (y y^{\prime \prime }+2 {y^{\prime }}^{2}\right ) = -\frac {2}{x} \]

8071

\[ {} y y^{\prime \prime \prime }+3 y^{\prime } y^{\prime \prime }-2 y y^{\prime \prime }-2 {y^{\prime }}^{2}+y y^{\prime } = {\mathrm e}^{2 x} \]

13062

\[ {} y^{\prime \prime \prime }+y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \]

13065

\[ {} x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }+\left (2 x y-1\right ) y^{\prime }+y^{2}-f \left (x \right ) = 0 \]

14270

\[ {} \left (x y^{\prime \prime \prime }-y^{\prime \prime }\right )^{2} = {y^{\prime \prime \prime }}^{2}+1 \]

15192

\[ {} {y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2} = 1 \]

15243

\[ {} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1 \]

15255

\[ {} y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right ) \]

15257

\[ {} \sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1 \]

15260

\[ {} {y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right ) \]

20249

\[ {} 2 x y^{\prime \prime } y^{\prime \prime \prime } = -a^{2}+{y^{\prime \prime }}^{2} \]

20260

\[ {} y^{\prime \prime } y^{\prime \prime \prime } = 2 \]

20687

\[ {} y^{\prime \prime } y^{\prime \prime \prime } = 2 \]

20716

\[ {} 2 x y^{\prime \prime } y^{\prime \prime \prime } = -a^{2}+{y^{\prime \prime }}^{2} \]

22068

\[ {} 5 {b^{\prime \prime \prime \prime }}^{5}+7 {b^{\prime }}^{10}+b^{7}-b^{5} = p \]

22194

\[ {} y y^{\prime \prime \prime }+x y^{\prime }+y = x^{2} \]

22408

\[ {} {s^{\prime \prime \prime }}^{2}+{s^{\prime \prime }}^{3} = s-3 t \]

23357

\[ {} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 5 \]