34.3.6 problem 23 (j)

Internal problem ID [7897]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary problems. Page 33
Problem number : 23 (j)
Date solved : Tuesday, September 30, 2025 at 05:09:35 PM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, _dAlembert]

\begin{align*} 2 u^{2}+2 u v+\left (u^{2}+v^{2}\right ) v^{\prime }&=0 \end{align*}
Maple. Time used: 0.018 (sec). Leaf size: 317
ode:=2*u^2+2*u*v(u)+(u^2+v(u)^2)*diff(v(u),u) = 0; 
dsolve(ode,v(u), singsol=all);
 
\begin{align*} v &= -\frac {2 \left (u^{2} c_1 -\frac {\left (4-8 u^{3} c_1^{{3}/{2}}+4 \sqrt {8 u^{6} c_1^{3}-4 u^{3} c_1^{{3}/{2}}+1}\right )^{{2}/{3}}}{4}\right )}{\left (4-8 u^{3} c_1^{{3}/{2}}+4 \sqrt {8 u^{6} c_1^{3}-4 u^{3} c_1^{{3}/{2}}+1}\right )^{{1}/{3}} \sqrt {c_1}} \\ v &= -\frac {\left (1+i \sqrt {3}\right ) \left (4-8 u^{3} c_1^{{3}/{2}}+4 \sqrt {8 u^{6} c_1^{3}-4 u^{3} c_1^{{3}/{2}}+1}\right )^{{1}/{3}}}{4 \sqrt {c_1}}-\frac {\sqrt {c_1}\, \left (i \sqrt {3}-1\right ) u^{2}}{\left (4-8 u^{3} c_1^{{3}/{2}}+4 \sqrt {8 u^{6} c_1^{3}-4 u^{3} c_1^{{3}/{2}}+1}\right )^{{1}/{3}}} \\ v &= \frac {4 i \sqrt {3}\, c_1 \,u^{2}+i \sqrt {3}\, \left (4-8 u^{3} c_1^{{3}/{2}}+4 \sqrt {8 u^{6} c_1^{3}-4 u^{3} c_1^{{3}/{2}}+1}\right )^{{2}/{3}}+4 u^{2} c_1 -\left (4-8 u^{3} c_1^{{3}/{2}}+4 \sqrt {8 u^{6} c_1^{3}-4 u^{3} c_1^{{3}/{2}}+1}\right )^{{2}/{3}}}{4 \left (4-8 u^{3} c_1^{{3}/{2}}+4 \sqrt {8 u^{6} c_1^{3}-4 u^{3} c_1^{{3}/{2}}+1}\right )^{{1}/{3}} \sqrt {c_1}} \\ \end{align*}
Mathematica. Time used: 25.358 (sec). Leaf size: 622
ode=2*(u^2+u*v[u])+(u^2+v[u]^2)*D[ v[u],u]==0; 
ic={}; 
DSolve[{ode,ic},v[u],u,IncludeSingularSolutions->True]
 
\begin{align*} v(u)&\to \frac {\sqrt [3]{-2 u^3+\sqrt {8 u^6-4 e^{3 c_1} u^3+e^{6 c_1}}+e^{3 c_1}}}{\sqrt [3]{2}}-\frac {\sqrt [3]{2} u^2}{\sqrt [3]{-2 u^3+\sqrt {8 u^6-4 e^{3 c_1} u^3+e^{6 c_1}}+e^{3 c_1}}}\\ v(u)&\to \frac {\left (1+i \sqrt {3}\right ) u^2}{2^{2/3} \sqrt [3]{-2 u^3+\sqrt {8 u^6-4 e^{3 c_1} u^3+e^{6 c_1}}+e^{3 c_1}}}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{-2 u^3+\sqrt {8 u^6-4 e^{3 c_1} u^3+e^{6 c_1}}+e^{3 c_1}}}{2 \sqrt [3]{2}}\\ v(u)&\to \frac {\left (1-i \sqrt {3}\right ) u^2}{2^{2/3} \sqrt [3]{-2 u^3+\sqrt {8 u^6-4 e^{3 c_1} u^3+e^{6 c_1}}+e^{3 c_1}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-2 u^3+\sqrt {8 u^6-4 e^{3 c_1} u^3+e^{6 c_1}}+e^{3 c_1}}}{2 \sqrt [3]{2}}\\ v(u)&\to \frac {\left (\sqrt {2} \sqrt {u^6}-u^3\right )^{2/3}-u^2}{\sqrt [3]{\sqrt {2} \sqrt {u^6}-u^3}}\\ v(u)&\to \frac {i \sqrt {3} u^2+u^2+i \sqrt {3} \left (\sqrt {2} \sqrt {u^6}-u^3\right )^{2/3}-\left (\sqrt {2} \sqrt {u^6}-u^3\right )^{2/3}}{2 \sqrt [3]{\sqrt {2} \sqrt {u^6}-u^3}}\\ v(u)&\to \frac {2 \sqrt [3]{2} \left (\sqrt {2} \sqrt {u^6}-u^3\right )^{2/3} \text {Root}\left [\text {$\#$1}^3-32\&,2\right ]+2^{2/3} u^2 \text {Root}\left [\text {$\#$1}^3+128\&,2\right ]}{8 \sqrt [3]{\sqrt {2} \sqrt {u^6}-u^3}} \end{align*}
Sympy
from sympy import * 
u = symbols("u") 
v = Function("v") 
ode = Eq(2*u**2 + 2*u*v(u) + (u**2 + v(u)**2)*Derivative(v(u), u),0) 
ics = {} 
dsolve(ode,func=v(u),ics=ics)
 
Timed Out