34.3.24 problem 25 (L)

Internal problem ID [7915]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary problems. Page 33
Problem number : 25 (L)
Date solved : Tuesday, September 30, 2025 at 05:10:01 PM
CAS classification : [[_homogeneous, `class G`], _rational, _Bernoulli]

\begin{align*} 2 y-3 x y^{2}-x y^{\prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=2*y(x)-3*x*y(x)^2-x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{2}}{x^{3}+c_1} \]
Mathematica. Time used: 0.106 (sec). Leaf size: 22
ode=(2*y[x]-3*x*y[x]^2)-x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^2}{x^3+c_1}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.121 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x*y(x)**2 - x*Derivative(y(x), x) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x^{2}}{C_{1} + x^{3}} \]