34.3.35 problem 26 (i)

Internal problem ID [7926]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary problems. Page 33
Problem number : 26 (i)
Date solved : Tuesday, September 30, 2025 at 05:10:08 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} y \left (y^{2}-2 x^{2}\right )+x \left (2 y^{2}-x^{2}\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.131 (sec). Leaf size: 71
ode:=y(x)*(y(x)^2-2*x^2)+x*(2*y(x)^2-x^2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {\frac {2 c_1 \,x^{3}-2 \sqrt {c_1^{2} x^{6}+4}}{c_1 \,x^{3}}}\, x}{2} \\ y &= \frac {\sqrt {2}\, \sqrt {\frac {c_1 \,x^{3}+\sqrt {c_1^{2} x^{6}+4}}{c_1 \,x^{3}}}\, x}{2} \\ \end{align*}
Mathematica. Time used: 0.084 (sec). Leaf size: 48
ode=y[x]*(y[x]^2-2*x^2)+x*(2*y[x]^2-x^2)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {2 K[1]^2-1}{(K[1]-1) K[1] (K[1]+1)}dK[1]=-3 \log (x)+c_1,y(x)\right ] \]
Sympy. Time used: 3.787 (sec). Leaf size: 105
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(-x**2 + 2*y(x)**2)*Derivative(y(x), x) + (-2*x**2 + y(x)**2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {x^{2} - \frac {\sqrt {C_{1} + x^{6}}}{x}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {x^{2} - \frac {\sqrt {C_{1} + x^{6}}}{x}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {x^{2} + \frac {\sqrt {C_{1} + x^{6}}}{x}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {x^{2} + \frac {\sqrt {C_{1} + x^{6}}}{x}}}{2}\right ] \]