Internal
problem
ID
[8049]
Book
:
Schaums
Outline.
Theory
and
problems
of
Differential
Equations,
1st
edition.
Frank
Ayres.
McGraw
Hill
1952
Section
:
Chapter
18.
Linear
equations
with
variable
coefficients
(Equations
of
second
order).
Supplemetary
problems.
Page
120
Problem
number
:
28
Date
solved
:
Tuesday, September 30, 2025 at 05:14:44 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)+(-4*x^2+x)*diff(y(x),x)+(4*x^2-2*x+1)*y(x) = (x^2-x+1)*exp(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+(x-4*x^2)*D[y[x],x]+(1-2*x+4*x^2)*y[x]==(x^2-x+1)*Exp[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + (-4*x**2 + x)*Derivative(y(x), x) - (x**2 - x + 1)*exp(x) + (4*x**2 - 2*x + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (4*x**2*y(x) - x**2*exp(x) + x**2*Derivative(y(x), (x, 2)) - 2*x*y(x) + x*exp(x) + y(x) - exp(x))/(x*(4*x - 1)) cannot be solved by the factorable group method