Internal
problem
ID
[8077]
Book
:
Schaums
Outline.
Theory
and
problems
of
Differential
Equations,
1st
edition.
Frank
Ayres.
McGraw
Hill
1952
Section
:
Chapter
21.
System
of
simultaneous
linear
equations.
Supplemetary
problems.
Page
163
Problem
number
:
17
Date
solved
:
Tuesday, September 30, 2025 at 05:15:16 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t)-x(t)+diff(y(t),t)+2*y(t) = 1+exp(t), diff(y(t),t)+2*y(t)+diff(z(t),t)+z(t) = exp(t)+2, diff(x(t),t)-x(t)+diff(z(t),t)+z(t) = 3+exp(t)]; dsolve(ode);
ode={D[x[t],t]-x[t]+D[y[t],t]+2*y[t]==1+Exp[t],D[y[t],t]+2*y[t]+D[z[t],t]+z[t]==2+Exp[t],D[x[t],t]-x[t]+D[z[t],t]+z[t]==3+Exp[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-x(t) + 2*y(t) - exp(t) + Derivative(x(t), t) + Derivative(y(t), t) - 1,0),Eq(2*y(t) + z(t) - exp(t) + Derivative(y(t), t) + Derivative(z(t), t) - 2,0),Eq(-x(t) + z(t) - exp(t) + Derivative(x(t), t) + Derivative(z(t), t) - 3,0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)