Internal
problem
ID
[8101]
Book
:
A
treatise
on
Differential
Equations
by
A.
R.
Forsyth.
6th
edition.
1929.
Macmillan
Co.
ltd.
New
York,
reprinted
1956
Section
:
Chapter
VI.
Note
I.
Integration
of
linear
equations
in
series
by
the
method
of
Frobenius.
page
243
Problem
number
:
Ex.
6(i),
page
257
Date
solved
:
Tuesday, September 30, 2025 at 05:15:33 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^2*(1+x)*diff(diff(y(x),x),x)-(2*x+1)*(-y(x)+x*diff(y(x),x)) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*(1+x)*D[y[x],{x,2}]-(1+2*x)*(x*D[y[x],x]+y[x])==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(x + 1)*Derivative(y(x), (x, 2)) - (2*x + 1)*(x*Derivative(y(x), x) - y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)