35.1.5 problem Ex. 6(iv), page 257

Internal problem ID [8104]
Book : A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan Co. ltd. New York, reprinted 1956
Section : Chapter VI. Note I. Integration of linear equations in series by the method of Frobenius. page 243
Problem number : Ex. 6(iv), page 257
Date solved : Tuesday, September 30, 2025 at 05:15:35 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 \left (2-x \right ) x^{2} y^{\prime \prime }-\left (4-x \right ) x y^{\prime }+\left (3-x \right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.026 (sec). Leaf size: 46
Order:=6; 
ode:=2*x^2*(2-x)*diff(diff(y(x),x),x)-(-x+4)*x*diff(y(x),x)+(-x+3)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \sqrt {x}\, \left (x \left (1+\frac {1}{8} x +\frac {1}{32} x^{2}+\frac {5}{512} x^{3}+\frac {7}{2048} x^{4}+\frac {21}{16384} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_1 +\left (1+\frac {1}{4} x +\frac {1}{32} x^{2}+\frac {1}{128} x^{3}+\frac {5}{2048} x^{4}+\frac {7}{8192} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_2 \right ) \]
Mathematica. Time used: 0.036 (sec). Leaf size: 94
ode=2*(2-x)*x^2*D[y[x],{x,2}]-(4-x)*x*D[y[x],x]+(3-x)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (-\frac {5 x^{9/2}}{2048}-\frac {x^{7/2}}{128}-\frac {x^{5/2}}{32}-\frac {x^{3/2}}{4}+\sqrt {x}\right )+c_2 \left (\frac {7 x^{11/2}}{2048}+\frac {5 x^{9/2}}{512}+\frac {x^{7/2}}{32}+\frac {x^{5/2}}{8}+x^{3/2}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(4 - 2*x)*Derivative(y(x), (x, 2)) - x*(4 - x)*Derivative(y(x), x) + (3 - x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
IndexError : list index out of range