Internal
problem
ID
[8121]
Book
:
Advanced
Mathematical
Methods
for
Scientists
and
Engineers,
Bender
and
Orszag.
Springer
October
29,
1999
Section
:
Chapter
3.
APPROXIMATE
SOLUTION
OF
LINEAR
DIFFERENTIAL
EQUATIONS.
page
136
Problem
number
:
3.24
(h)
Date
solved
:
Tuesday, September 30, 2025 at 05:15:49 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
Using series method with expansion around
Order:=6; ode:=x*(x+2)*diff(diff(y(x),x),x)+(1+x)*diff(y(x),x)-4*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x*(x+2)*D[y[x],{x,2}]+(x+1)*D[y[x],x]-4*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x + 2)*Derivative(y(x), (x, 2)) + (x + 1)*Derivative(y(x), x) - 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)