37.2.13 problem 7.3.101 (c)

Internal problem ID [8156]
Book : Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section : Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number : 7.3.101 (c)
Date solved : Tuesday, September 30, 2025 at 05:16:14 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+x^{5} y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.019 (sec). Leaf size: 58
Order:=6; 
ode:=x*diff(diff(y(x),x),x)+x^5*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 x \left (1-\frac {1}{2} x +\frac {1}{12} x^{2}-\frac {1}{144} x^{3}+\frac {1}{2880} x^{4}-\frac {2881}{86400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (\ln \left (x \right ) \left (-x +\frac {1}{2} x^{2}-\frac {1}{12} x^{3}+\frac {1}{144} x^{4}-\frac {1}{2880} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (1-\frac {3}{4} x^{2}+\frac {7}{36} x^{3}-\frac {35}{1728} x^{4}+\frac {101}{86400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )\right ) \]
Mathematica. Time used: 0.012 (sec). Leaf size: 85
ode=x*D[y[x],{x,2}]+x^5*D[y[x],x]+y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {1}{144} x \left (x^3-12 x^2+72 x-144\right ) \log (x)+\frac {-47 x^4+480 x^3-2160 x^2+1728 x+1728}{1728}\right )+c_2 \left (\frac {x^5}{2880}-\frac {x^4}{144}+\frac {x^3}{12}-\frac {x^2}{2}+x\right ) \]
Sympy. Time used: 0.288 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**5*Derivative(y(x), x) + x*Derivative(y(x), (x, 2)) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} x \left (\frac {x^{4}}{2880} - \frac {x^{3}}{144} + \frac {x^{2}}{12} - \frac {x}{2} + 1\right ) + O\left (x^{6}\right ) \]