38.1.5 problem 5

Internal problem ID [8166]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Exercises 1.1 at page 12
Problem number : 5
Date solved : Tuesday, September 30, 2025 at 05:16:23 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \end{align*}
Maple. Time used: 0.379 (sec). Leaf size: 26
ode:=diff(diff(y(x),x),x) = (1+diff(y(x),x)^2)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -i x +c_{1} \\ y &= i x +c_{1} \\ y &= \cosh \left (x +c_{1} \right )+c_{2} \\ \end{align*}
Mathematica. Time used: 4.273 (sec). Leaf size: 50
ode=D[y[x],{x,2}]==Sqrt[1+D[y[x],x]^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \int _1^x\sinh (c_1+K[1])dK[1]+c_2\\ y(x)&\to \frac {1}{2} \left (e^{-x}+e^x-e-\frac {1}{e}+2 c_2\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sqrt(Derivative(y(x), x)**2 + 1) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out