Internal
problem
ID
[8211]
Book
:
A
First
Course
in
Differential
Equations
with
Modeling
Applications
by
Dennis
G.
Zill.
12
ed.
Metric
version.
2024.
Cengage
learning.
Section
:
Chapter
1.
Introduction
to
differential
equations.
Exercises
1.1
at
page
12
Problem
number
:
56
Date
solved
:
Tuesday, September 30, 2025 at 05:18:52 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(t),t),t)+2*diff(y(t),t)+4*y(t) = 5*sin(t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]+2*D[y[t],t]+4*y[t]==5*Sin[t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(4*y(t) - 5*sin(t) + 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)