Internal
problem
ID
[8218]
Book
:
A
First
Course
in
Differential
Equations
with
Modeling
Applications
by
Dennis
G.
Zill.
12
ed.
Metric
version.
2024.
Cengage
learning.
Section
:
Chapter
1.
Introduction
to
differential
equations.
Exercises
1.1
at
page
12
Problem
number
:
72
Date
solved
:
Tuesday, September 30, 2025 at 05:19:00 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+2*x^2*diff(diff(y(x),x),x)+20*x*diff(y(x),x)-78*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]+2*x^2*D[y[x],{x,2}]+20*x*D[y[x],x]-78*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + 2*x**2*Derivative(y(x), (x, 2)) + 20*x*Derivative(y(x), x) - 78*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)