38.2.2 problem 2

Internal problem ID [8220]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Section 1.2 Initial value problems. Exercises 1.2 at page 19
Problem number : 2
Date solved : Tuesday, September 30, 2025 at 05:19:01 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y-y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (-1\right )&=2 \\ \end{align*}
Maple. Time used: 0.054 (sec). Leaf size: 16
ode:=diff(y(x),x) = y(x)-y(x)^2; 
ic:=[y(-1) = 2]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = -\frac {2}{{\mathrm e}^{-1-x}-2} \]
Mathematica
ode=D[y[x],x]==y[x]-y[x]^2; 
ic={y[-1]==2}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

{}

Sympy. Time used: 0.217 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)**2 - y(x) + Derivative(y(x), x),0) 
ics = {y(-1): 2} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {1}{1 - \frac {e^{- x}}{2 e}} \]