38.2.4 problem 4

Internal problem ID [8222]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Section 1.2 Initial value problems. Exercises 1.2 at page 19
Problem number : 4
Date solved : Tuesday, September 30, 2025 at 05:19:04 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }+2 x y^{2}&=0 \end{align*}

With initial conditions

\begin{align*} y \left (-2\right )&={\frac {1}{2}} \\ \end{align*}
Maple. Time used: 0.057 (sec). Leaf size: 11
ode:=diff(y(x),x)+2*x*y(x)^2 = 0; 
ic:=[y(-2) = 1/2]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {1}{x^{2}-2} \]
Mathematica. Time used: 0.051 (sec). Leaf size: 12
ode=D[y[x],x]+2*x*y[x]^2==0; 
ic={y[-2]==1/2}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{x^2-2} \end{align*}
Sympy. Time used: 0.093 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x)**2 + Derivative(y(x), x),0) 
ics = {y(-2): 1/2} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {1}{x^{2} - 2} \]