38.2.32 problem 31 (b)

Internal problem ID [8250]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Section 1.2 Initial value problems. Exercises 1.2 at page 19
Problem number : 31 (b)
Date solved : Tuesday, September 30, 2025 at 05:20:22 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=-1 \\ \end{align*}
Maple. Time used: 0.036 (sec). Leaf size: 11
ode:=diff(y(x),x) = y(x)^2; 
ic:=[y(0) = -1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = -\frac {1}{x +1} \]
Mathematica. Time used: 0.002 (sec). Leaf size: 12
ode=D[y[x],x]==y[x]^2; 
ic={y[0]==-1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {1}{x+1} \end{align*}
Sympy. Time used: 0.081 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**2 + Derivative(y(x), x),0) 
ics = {y(0): -1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - \frac {1}{x + 1} \]