38.4.3 problem 1 (c)

Internal problem ID [8302]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.1 Solution curves without a solution. Exercises 2.1 at page 44
Problem number : 1 (c)
Date solved : Sunday, October 12, 2025 at 01:35:06 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=x^{2}-y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=2 \\ \end{align*}
Maple. Time used: 0.761 (sec). Leaf size: 167
ode:=diff(y(x),x) = x^2-y(x)^2; 
ic:=[y(0) = 2]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \left \{\begin {array}{cc} \frac {2 \left (\pi \left (-\frac {\Gamma \left (\frac {3}{4}\right )^{2} \sqrt {2}}{2}+\pi \right ) \operatorname {BesselI}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselK}\left (\frac {3}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}\right ) x}{\left (-\Gamma \left (\frac {3}{4}\right )^{2} \pi \sqrt {2}+2 \pi ^{2}\right ) \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )-2 \operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}} & x <0 \\ 2 & x =0 \\ \frac {2 \left (\pi \left (\frac {\Gamma \left (\frac {3}{4}\right )^{2} \sqrt {2}}{2}+\pi \right ) \operatorname {BesselI}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )-\operatorname {BesselK}\left (\frac {3}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}\right ) x}{2 \operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}+\left (\Gamma \left (\frac {3}{4}\right )^{2} \pi \sqrt {2}+2 \pi ^{2}\right ) \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} & 0<x \end {array}\right . \]
Mathematica. Time used: 0.365 (sec). Leaf size: 146
ode=D[y[x],x]==x^2-y[x]^2; 
ic={y[0]==2}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\sqrt {2} \operatorname {Gamma}\left (\frac {3}{4}\right ) \left (x^2 \left (-\operatorname {BesselJ}\left (-\frac {5}{4},\frac {i x^2}{2}\right )\right )+x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {i x^2}{2}\right )+i \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )\right )-(2-2 i) x^2 \operatorname {Gamma}\left (\frac {1}{4}\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {i x^2}{2}\right )}{2 i \sqrt {2} x \operatorname {Gamma}\left (\frac {3}{4}\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )+(2+2 i) x \operatorname {Gamma}\left (\frac {1}{4}\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {i x^2}{2}\right )} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 + y(x)**2 + Derivative(y(x), x),0) 
ics = {y(0): 2} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list