38.4.9 problem 3 (a)

Internal problem ID [8308]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.1 Solution curves without a solution. Exercises 2.1 at page 44
Problem number : 3 (a)
Date solved : Tuesday, September 30, 2025 at 05:22:30 PM
CAS classification : [_linear]

\begin{align*} y^{\prime }&=1-x y \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.050 (sec). Leaf size: 25
ode:=diff(y(x),x) = 1-x*y(x); 
ic:=[y(0) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = -\frac {i {\mathrm e}^{-\frac {x^{2}}{2}} \sqrt {\pi }\, \sqrt {2}\, \operatorname {erf}\left (\frac {i \sqrt {2}\, x}{2}\right )}{2} \]
Mathematica. Time used: 0.028 (sec). Leaf size: 32
ode=D[y[x],x]==1-x*y[x]; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \sqrt {\frac {\pi }{2}} e^{-\frac {x^2}{2}} \text {erfi}\left (\frac {x}{\sqrt {2}}\right ) \end{align*}
Sympy. Time used: 0.247 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x) + Derivative(y(x), x) - 1,0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {\pi } e^{- \frac {x^{2}}{2}} \operatorname {erfi}{\left (\frac {\sqrt {2} x}{2} \right )}}{2} \]