38.4.15 problem 4 (c)

Internal problem ID [8314]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.1 Solution curves without a solution. Exercises 2.1 at page 44
Problem number : 4 (c)
Date solved : Tuesday, September 30, 2025 at 05:23:49 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\sin \left (x \right ) \cos \left (y\right ) \end{align*}

With initial conditions

\begin{align*} y \left (3\right )&=3 \\ \end{align*}
Maple. Time used: 1.035 (sec). Leaf size: 90
ode:=diff(y(x),x) = sin(x)*cos(y(x)); 
ic:=[y(3) = 3]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \arctan \left (\frac {\sin \left (3\right ) {\mathrm e}^{2 \cos \left (3\right )-2 \cos \left (x \right )}+{\mathrm e}^{2 \cos \left (3\right )-2 \cos \left (x \right )}+\sin \left (3\right )-1}{\sin \left (3\right ) {\mathrm e}^{2 \cos \left (3\right )-2 \cos \left (x \right )}+{\mathrm e}^{2 \cos \left (3\right )-2 \cos \left (x \right )}-\sin \left (3\right )+1}, \frac {\cos \left (3\right )}{-\sin \left (3\right ) \sinh \left (-\cos \left (3\right )+\cos \left (x \right )\right )+\cosh \left (-\cos \left (3\right )+\cos \left (x \right )\right )}\right ) \]
Mathematica. Time used: 0.034 (sec). Leaf size: 55
ode=D[y[x],x]==Sin[x]*Cos[y[x]]; 
ic={y[3]==3}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [-y(x) \int _3^x0dK[1]+\int _3^x-\sec (y(x)) (\sin (K[1]-y(x))+\sin (K[1]+y(x)))dK[1]+2 \coth ^{-1}(\sin (y(x)))=2 \coth ^{-1}(\sin (3)),y(x)\right ] \]
Sympy. Time used: 1.086 (sec). Leaf size: 138
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sin(x)*cos(y(x)) + Derivative(y(x), x),0) 
ics = {y(3): 3} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \pi - \operatorname {asin}{\left (\frac {e^{2 \cos {\left (x \right )}} + \frac {\sin {\left (3 \right )} + 1}{- e^{- 2 \cos {\left (3 \right )}} + e^{- 2 \cos {\left (3 \right )}} \sin {\left (3 \right )}}}{- e^{2 \cos {\left (x \right )}} + \frac {\sin {\left (3 \right )} + 1}{- e^{- 2 \cos {\left (3 \right )}} + e^{- 2 \cos {\left (3 \right )}} \sin {\left (3 \right )}}} \right )}, \ y{\left (x \right )} = \operatorname {asin}{\left (\frac {e^{2 \cos {\left (x \right )}} + \frac {\sin {\left (3 \right )} + 1}{- e^{- 2 \cos {\left (3 \right )}} + e^{- 2 \cos {\left (3 \right )}} \sin {\left (3 \right )}}}{- e^{2 \cos {\left (x \right )}} + \frac {\sin {\left (3 \right )} + 1}{- e^{- 2 \cos {\left (3 \right )}} + e^{- 2 \cos {\left (3 \right )}} \sin {\left (3 \right )}}} \right )}\right ] \]