38.4.20 problem 6 (b)

Internal problem ID [8319]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.1 Solution curves without a solution. Exercises 2.1 at page 44
Problem number : 6 (b)
Date solved : Tuesday, September 30, 2025 at 05:26:19 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }&=x +y \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=-3 \\ \end{align*}
Maple. Time used: 0.025 (sec). Leaf size: 15
ode:=diff(y(x),x) = x+y(x); 
ic:=[y(1) = -3]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = -x -1-{\mathrm e}^{x -1} \]
Mathematica. Time used: 0.022 (sec). Leaf size: 31
ode=D[y[x],x]==x+y[x]; 
ic={y[1]==-3}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{x-1} \left (e \int _1^xe^{-K[1]} K[1]dK[1]-3\right ) \end{align*}
Sympy. Time used: 0.072 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x - y(x) + Derivative(y(x), x),0) 
ics = {y(1): -3} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - x - \frac {e^{x}}{e} - 1 \]