38.4.41 problem 23

Internal problem ID [8340]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.1 Solution curves without a solution. Exercises 2.1 at page 44
Problem number : 23
Date solved : Tuesday, September 30, 2025 at 05:29:22 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\left (y-2\right )^{4} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 116
ode:=diff(y(x),x) = (y(x)-2)^4; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {3^{{2}/{3}} \left (-\left (c_1 +x \right )^{2}\right )^{{1}/{3}}+6 c_1 +6 x}{3 c_1 +3 x} \\ y &= \frac {\left (-3 i 3^{{1}/{6}}-3^{{2}/{3}}\right ) \left (-\left (c_1 +x \right )^{2}\right )^{{1}/{3}}+12 x +12 c_1}{6 c_1 +6 x} \\ y &= \frac {\left (3 i 3^{{1}/{6}}-3^{{2}/{3}}\right ) \left (-\left (c_1 +x \right )^{2}\right )^{{1}/{3}}+12 x +12 c_1}{6 c_1 +6 x} \\ \end{align*}
Mathematica. Time used: 0.573 (sec). Leaf size: 133
ode=D[y[x],x]==(y[x]-2)^4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{3} \left (6-\frac {3^{2/3} \sqrt [3]{(x+c_1){}^2}}{x+c_1}\right )\\ y(x)&\to \frac {12 x+\sqrt [6]{3} \left (\sqrt {3}-3 i\right ) \sqrt [3]{(x+c_1){}^2}+12 c_1}{6 (x+c_1)}\\ y(x)&\to \frac {12 x+\sqrt [6]{3} \left (\sqrt {3}+3 i\right ) \sqrt [3]{(x+c_1){}^2}+12 c_1}{6 (x+c_1)}\\ y(x)&\to 2 \end{align*}
Sympy. Time used: 1.828 (sec). Leaf size: 167
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-(y(x) - 2)**4 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt [3]{- \frac {8 C_{1}}{- C_{1} + x} + \frac {8 x}{- C_{1} + x} - 8 - \frac {1}{3 \left (- C_{1} + x\right )}}}{2} - \frac {\sqrt {3} i \sqrt [3]{- \frac {8 C_{1}}{- C_{1} + x} + \frac {8 x}{- C_{1} + x} - 8 - \frac {1}{3 \left (- C_{1} + x\right )}}}{2} + 2, \ y{\left (x \right )} = - \frac {\sqrt [3]{- \frac {8 C_{1}}{- C_{1} + x} + \frac {8 x}{- C_{1} + x} - 8 - \frac {1}{3 \left (- C_{1} + x\right )}}}{2} + \frac {\sqrt {3} i \sqrt [3]{- \frac {8 C_{1}}{- C_{1} + x} + \frac {8 x}{- C_{1} + x} - 8 - \frac {1}{3 \left (- C_{1} + x\right )}}}{2} + 2, \ y{\left (x \right )} = \sqrt [3]{- \frac {8 C_{1}}{- C_{1} + x} + \frac {8 x}{- C_{1} + x} - 8 - \frac {1}{3 \left (- C_{1} + x\right )}} + 2\right ] \]