Internal
problem
ID
[8367]
Book
:
A
First
Course
in
Differential
Equations
with
Modeling
Applications
by
Dennis
G.
Zill.
12
ed.
Metric
version.
2024.
Cengage
learning.
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.2
Separable
equations.
Exercises
2.2
at
page
53
Problem
number
:
19
Date
solved
:
Tuesday, September 30, 2025 at 05:30:12 PM
CAS
classification
:
[_separable]
ode:=diff(y(x),x) = (x*y(x)+3*x-y(x)-3)/(x*y(x)-2*x+4*y(x)-8); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==(x*y[x]+3*x-y[x]-3)/(x*y[x]-2*x+4*y[x]-8); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x*y(x) + 3*x - y(x) - 3)/(x*y(x) - 2*x + 4*y(x) - 8),0) ics = {} dsolve(ode,func=y(x),ics=ics)