38.5.28 problem 28

Internal problem ID [8376]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.2 Separable equations. Exercises 2.2 at page 53
Problem number : 28
Date solved : Tuesday, September 30, 2025 at 05:33:03 PM
CAS classification : [_separable]

\begin{align*} \left (x^{4}+1\right ) y^{\prime }+x \left (1+4 y^{2}\right )&=0 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0 \\ \end{align*}
Maple. Time used: 0.069 (sec). Leaf size: 21
ode:=(x^4+1)*diff(y(x),x)+x*(1+4*y(x)^2) = 0; 
ic:=[y(1) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {-x^{2}+1}{2 x^{2}+2} \]
Mathematica
ode=(1+x^4)*D[y[x],x]+x*(1+4*y[x]^2)==0; 
ic={y[1]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

{}

Sympy. Time used: 0.247 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(4*y(x)**2 + 1) + (x**4 + 1)*Derivative(y(x), x),0) 
ics = {y(1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\cot {\left (\operatorname {atan}{\left (x^{2} \right )} + \frac {\pi }{4} \right )}}{2} \]