38.5.58 problem 48 (b 4)

Internal problem ID [8406]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.2 Separable equations. Exercises 2.2 at page 53
Problem number : 48 (b 4)
Date solved : Tuesday, September 30, 2025 at 05:34:56 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\frac {1}{y-3} \end{align*}

With initial conditions

\begin{align*} y \left (-1\right )&=4 \\ \end{align*}
Maple. Time used: 0.052 (sec). Leaf size: 13
ode:=diff(y(x),x) = 1/(y(x)-3); 
ic:=[y(-1) = 4]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 3+\sqrt {3+2 x} \]
Mathematica. Time used: 0.002 (sec). Leaf size: 16
ode=D[y[x],x]==1/(y[x]-3); 
ic={y[-1]==4}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \sqrt {2 x+3}+3 \end{align*}
Sympy. Time used: 0.279 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - 1/(y(x) - 3),0) 
ics = {y(-1): 4} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \sqrt {2 x + 3} + 3 \]