38.5.75 problem 64

Internal problem ID [8423]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.2 Separable equations. Exercises 2.2 at page 53
Problem number : 64
Date solved : Tuesday, September 30, 2025 at 05:36:23 PM
CAS classification : [_quadrature]

\begin{align*} 1+{x^{\prime }}^{2}&=\frac {a}{y} \end{align*}
Maple. Time used: 0.030 (sec). Leaf size: 71
ode:=1+diff(x(y),y)^2 = a/y; 
dsolve(ode,x(y), singsol=all);
 
\begin{align*} x &= \sqrt {y \left (a -y \right )}-\frac {a \arctan \left (\frac {a -2 y}{2 \sqrt {y \left (a -y \right )}}\right )}{2}+c_1 \\ x &= -\sqrt {y \left (a -y \right )}+\frac {a \arctan \left (\frac {a -2 y}{2 \sqrt {y \left (a -y \right )}}\right )}{2}+c_1 \\ \end{align*}
Mathematica. Time used: 0.205 (sec). Leaf size: 108
ode=1+D[x[y],y]^2== a/y; 
ic={}; 
DSolve[{ode,ic},x[y],y,IncludeSingularSolutions->True]
 
\begin{align*} x(y)&\to -\sqrt {a-y} \left (\frac {\sqrt {a} \arcsin \left (\frac {\sqrt {y}}{\sqrt {a}}\right )}{\sqrt {1-\frac {y}{a}}}+\sqrt {y}\right )+c_1\\ x(y)&\to \sqrt {a-y} \left (\frac {\sqrt {a} \arcsin \left (\frac {\sqrt {y}}{\sqrt {a}}\right )}{\sqrt {1-\frac {y}{a}}}+\sqrt {y}\right )+c_1 \end{align*}
Sympy. Time used: 1.029 (sec). Leaf size: 190
from sympy import * 
y = symbols("y") 
a = symbols("a") 
x = Function("x") 
ode = Eq(-a/y + Derivative(x(y), y)**2 + 1,0) 
ics = {} 
dsolve(ode,func=x(y),ics=ics)
 
\[ \left [ x{\left (y \right )} = C_{1} - \begin {cases} - \frac {i \sqrt {a} \sqrt {y}}{\sqrt {-1 + \frac {y}{a}}} - i a \operatorname {acosh}{\left (\frac {\sqrt {y}}{\sqrt {a}} \right )} + \frac {i y^{\frac {3}{2}}}{\sqrt {a} \sqrt {-1 + \frac {y}{a}}} & \text {for}\: \left |{\frac {y}{a}}\right | > 1 \\\sqrt {a} \sqrt {y} \sqrt {1 - \frac {y}{a}} + a \operatorname {asin}{\left (\frac {\sqrt {y}}{\sqrt {a}} \right )} & \text {otherwise} \end {cases}, \ x{\left (y \right )} = C_{1} + \begin {cases} - \frac {i \sqrt {a} \sqrt {y}}{\sqrt {-1 + \frac {y}{a}}} - i a \operatorname {acosh}{\left (\frac {\sqrt {y}}{\sqrt {a}} \right )} + \frac {i y^{\frac {3}{2}}}{\sqrt {a} \sqrt {-1 + \frac {y}{a}}} & \text {for}\: \left |{\frac {y}{a}}\right | > 1 \\\sqrt {a} \sqrt {y} \sqrt {1 - \frac {y}{a}} + a \operatorname {asin}{\left (\frac {\sqrt {y}}{\sqrt {a}} \right )} & \text {otherwise} \end {cases}\right ] \]