Internal
problem
ID
[8465]
Book
:
A
First
Course
in
Differential
Equations
with
Modeling
Applications
by
Dennis
G.
Zill.
12
ed.
Metric
version.
2024.
Cengage
learning.
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.3
Linear
equations.
Exercises
2.3
at
page
63
Problem
number
:
35
Date
solved
:
Tuesday, September 30, 2025 at 05:37:34 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=diff(y(x),x)-y(x)*sin(x) = 2*sin(x); ic:=[y(1/2*Pi) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],x]-Sin[x]*y[x]==2*Sin[x]; ic={y[Pi/2]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x)*sin(x) - 2*sin(x) + Derivative(y(x), x),0) ics = {y(pi/2): 1} dsolve(ode,func=y(x),ics=ics)