40.1.2 problem 7

Internal problem ID [8578]
Book : ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section : Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number : 7
Date solved : Tuesday, September 30, 2025 at 05:39:22 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=-2 x y \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 24
Order:=6; 
ode:=diff(y(x),x) = -2*x*y(x); 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-x^{2}+\frac {1}{2} x^{4}\right ) y \left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 20
ode=D[y[x],x]==-2*x*y[x]; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {x^4}{2}-x^2+1\right ) \]
Sympy. Time used: 0.140 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} - C_{1} x^{2} + \frac {C_{1} x^{4}}{2} + O\left (x^{6}\right ) \]