40.1.5 problem 10

Internal problem ID [8581]
Book : ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section : Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.1. page 174
Problem number : 10
Date solved : Tuesday, September 30, 2025 at 05:39:23 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-y^{\prime }+x y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 54
Order:=6; 
ode:=diff(diff(y(x),x),x)-diff(y(x),x)+x*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{6} x^{3}-\frac {1}{24} x^{4}-\frac {1}{120} x^{5}\right ) y \left (0\right )+\left (x +\frac {1}{2} x^{2}+\frac {1}{6} x^{3}-\frac {1}{24} x^{4}-\frac {1}{30} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 63
ode=D[y[x],{x,2}]-D[y[x],x]+x*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (-\frac {x^5}{120}-\frac {x^4}{24}-\frac {x^3}{6}+1\right )+c_2 \left (-\frac {x^5}{30}-\frac {x^4}{24}+\frac {x^3}{6}+\frac {x^2}{2}+x\right ) \]
Sympy. Time used: 0.204 (sec). Leaf size: 37
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x) - Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (- \frac {x^{4}}{24} - \frac {x^{3}}{6} + 1\right ) + C_{1} x \left (- \frac {x^{3}}{24} + \frac {x^{2}}{6} + \frac {x}{2} + 1\right ) + O\left (x^{6}\right ) \]