Internal
problem
ID
[8587]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
5.
Series
Solutions
of
ODEs.
Special
Functions.
Problem
set
5.1.
page
174
Problem
number
:
17
Date
solved
:
Tuesday, September 30, 2025 at 05:39:27 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=diff(diff(y(x),x),x)+3*x*diff(y(x),x)+2*y(x) = 0; ic:=[y(0) = 1, D(y)(0) = 1]; dsolve([ode,op(ic)],y(x),type='series',x=0);
ode=D[y[x],{x,2}]+3*x*D[y[x],x]+2*y[x]==0; ic={y[0]==1,Derivative[1][y][0] ==1}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x*Derivative(y(x), x) + 2*y(x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)