40.2.10 problem 11

Internal problem ID [8599]
Book : ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section : Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended Power Series Method: Frobenius Method page 186
Problem number : 11
Date solved : Tuesday, September 30, 2025 at 05:39:36 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.034 (sec). Leaf size: 44
Order:=6; 
ode:=x*diff(diff(y(x),x),x)+(2-2*x)*diff(y(x),x)+(x-2)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \left (1+x +\frac {1}{2} x^{2}+\frac {1}{6} x^{3}+\frac {1}{24} x^{4}+\frac {1}{120} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_2 \left (1+2 x +\frac {3}{2} x^{2}+\frac {2}{3} x^{3}+\frac {5}{24} x^{4}+\frac {1}{20} x^{5}+\operatorname {O}\left (x^{6}\right )\right )}{x} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 58
ode=x*D[y[x],{x,2}]+(2-2*x)*D[y[x],x]+(x-2)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {5 x^3}{24}+\frac {2 x^2}{3}+\frac {3 x}{2}+\frac {1}{x}+2\right )+c_2 \left (\frac {x^4}{24}+\frac {x^3}{6}+\frac {x^2}{2}+x+1\right ) \]
Sympy. Time used: 0.312 (sec). Leaf size: 61
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) + (2 - 2*x)*Derivative(y(x), x) + (x - 2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{5}}{120} + \frac {x^{4}}{24} + \frac {x^{3}}{6} + \frac {x^{2}}{2} + x + 1\right ) + \frac {C_{1} \left (- \frac {x^{6}}{144} - \frac {x^{5}}{30} - \frac {x^{4}}{8} - \frac {x^{3}}{3} - \frac {x^{2}}{2} + 1\right )}{x} + O\left (x^{6}\right ) \]