Internal
problem
ID
[8607]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
5.
Series
Solutions
of
ODEs.
Special
Functions.
Problem
set
5.3.
Extended
Power
Series
Method:
Frobenius
Method
page
186
Problem
number
:
20
Date
solved
:
Tuesday, September 30, 2025 at 05:39:42 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=3*t*(t+1)*diff(diff(y(t),t),t)+t*diff(y(t),t)-y(t) = 0; dsolve(ode,y(t),type='series',t=0);
ode=3*t*(1+t)*D[y[t],{t,2}]+t*D[y[t],t]-y[t]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[t],{t,0,5}]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(3*t*(t + 1)*Derivative(y(t), (t, 2)) + t*Derivative(y(t), t) - y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)