Internal
problem
ID
[8648]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
6.
Laplace
Transforms.
Problem
set
6.3,
page
224
Problem
number
:
18
Date
solved
:
Tuesday, September 30, 2025 at 05:40:10 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
Using Laplace method With initial conditions
ode:=9*diff(diff(y(t),t),t)-6*diff(y(t),t)+y(t) = 0; ic:=[y(0) = 3, D(y)(0) = 1]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=9*D[y[t],{t,2}]-6*D[y[t],t]+y[t]==0; ic={y[0]==3,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(y(t) - 6*Derivative(y(t), t) + 9*Derivative(y(t), (t, 2)),0) ics = {y(0): 3, Subs(Derivative(y(t), t), t, 0): 1} dsolve(ode,func=y(t),ics=ics)