Internal
problem
ID
[8651]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
6.
Laplace
Transforms.
Problem
set
6.3,
page
224
Problem
number
:
21
Date
solved
:
Tuesday, September 30, 2025 at 05:40:12 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+9*y(t) = piecewise(0 < t and t < Pi,8*sin(t),Pi < t,0); ic:=[y(0) = 0, D(y)(0) = 4]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+9*y[t]==Piecewise[{{8*Sin[t],0<t<Pi},{0,t>Pi}}]; ic={y[0]==0,Derivative[1][y][0] ==4}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((8*sin(t), (t <= pi) & (t > 0)), (0, t > pi)) + 9*y(t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 4} dsolve(ode,func=y(t),ics=ics)