Internal
problem
ID
[8657]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
6.
Laplace
Transforms.
Problem
set
6.3,
page
224
Problem
number
:
27
Date
solved
:
Tuesday, September 30, 2025 at 05:40:19 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+4*y(t) = piecewise(0 < t and t < 5,8*t^2,5 < t,0); ic:=[y(1) = 1+cos(2), D(y)(1) = 4-2*sin(2)]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+4*y[t]==Piecewise[{{8*t^2,0<t<5},{0,t>5}}]; ic={y[1]==1+Cos[2],Derivative[1][y][1]==4-2*Sin[2]}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((8*t**2, (t > 0) & (t < 5)), (0, t > 5)) + 4*y(t) + Derivative(y(t), (t, 2)),0) ics = {y(1): cos(2) + 1, Subs(Derivative(y(t), t), t, 1): 4 - 2*sin(2)} dsolve(ode,func=y(t),ics=ics)