Internal
problem
ID
[8665]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
6.
Laplace
Transforms.
Problem
set
6.4,
page
230
Problem
number
:
10
Date
solved
:
Tuesday, September 30, 2025 at 05:40:28 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+5*diff(y(t),t)+6*y(t) = Dirac(t-1/2*Pi)+Heaviside(t-Pi)*cos(t); ic:=[y(0) = 0, D(y)(0) = 0]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+5*D[y[t],t]+6*y[t]==DiracDelta[t-1/2*Pi]+UnitStep[t-Pi]*Cos[t]; ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
Timed out
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Dirac(t - pi/2) + 6*y(t) - cos(t)*Heaviside(t - pi) + 5*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)