Internal
problem
ID
[8667]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
6.
Laplace
Transforms.
Problem
set
6.4,
page
230
Problem
number
:
12
Date
solved
:
Tuesday, September 30, 2025 at 05:40:30 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+2*diff(y(t),t)+5*y(t) = 25*t-100*Dirac(t-Pi); ic:=[y(0) = -2, D(y)(0) = 5]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+2*D[y[t],t]+5*y[t]==25*t-100*DiracDelta[t-Pi]; ic={y[0]==-2,Derivative[1][y][0] ==5}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-25*t + 100*Dirac(t - pi) + 5*y(t) + 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): -2, Subs(Derivative(y(t), t), t, 0): 5} dsolve(ode,func=y(t),ics=ics)