Internal
problem
ID
[8676]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.1
Separable
equations
problems.
page
7
Problem
number
:
9
Date
solved
:
Tuesday, September 30, 2025 at 05:40:46 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=x*diff(y(x),x)+y(x) = y(x)^2; ic:=[y(1) = 1/2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x*D[y[x],x]+y[x]==y[x]^2; ic={y[1]==1/2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) - y(x)**2 + y(x),0) ics = {y(1): 1/2} dsolve(ode,func=y(x),ics=ics)