Internal
problem
ID
[10064]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
51
Date
solved
:
Sunday, March 30, 2025 at 02:58:50 PM
CAS
classification
:
[_Abel]
ode:=diff(y(x),x)-(y(x)-f(x))*(y(x)-g(x))*(y(x)-(a*f(x)+b*g(x))/(a+b))*h(x)-diff(f(x),x)*(y(x)-g(x))/(f(x)-g(x))-diff(g(x),x)*(y(x)-f(x))/(g(x)-f(x)) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] - (y[x]-f[x])*(y[x]-g[x])*(y[x]-(a*f[x]+b*g[x])/(a+b))*h[x]- D[ f[x],x]*(y[x]-g[x])/(f[x]-g[x]) - D[ g[x],x]*(y[x]-f[x])/(g[x]-f[x])==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") f = Function("f") g = Function("g") ode = Eq((f(x) - y(x))*(-g(x) + y(x))*(y(x) - (a*f(x) + b*g(x))/(a + b))*h(x) + Derivative(y(x), x) - (-g(x) + y(x))*Derivative(f(x), x)/(f(x) - g(x)) - (-f(x) + y(x))*Derivative(g(x), x)/(-f(x) + g(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out