60.1.110 problem 112

Internal problem ID [10124]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 112
Date solved : Sunday, March 30, 2025 at 03:17:15 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x y^{\prime }-\sqrt {y^{2}+x^{2}}-y&=0 \end{align*}

Maple. Time used: 0.021 (sec). Leaf size: 26
ode:=x*diff(y(x),x)-(x^2+y(x)^2)^(1/2)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {-c_1 \,x^{2}+\sqrt {y^{2}+x^{2}}+y}{x^{2}} = 0 \]
Mathematica. Time used: 0.307 (sec). Leaf size: 13
ode=x*D[y[x],x] - Sqrt[y[x]^2 + x^2] - y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x \sinh (\log (x)+c_1) \]
Sympy. Time used: 1.128 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - sqrt(x**2 + y(x)**2) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - x \sinh {\left (C_{1} - \log {\left (x \right )} \right )} \]