60.1.397 problem 408

Internal problem ID [10411]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 408
Date solved : Sunday, March 30, 2025 at 04:40:52 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x {y^{\prime }}^{2}-2 y+x&=0 \end{align*}

Maple. Time used: 0.031 (sec). Leaf size: 96
ode:=x*diff(y(x),x)^2-2*y(x)+x = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (2 \operatorname {LambertW}\left (\frac {\sqrt {c_1 x}}{c_1}\right )^{2}+2 \operatorname {LambertW}\left (\frac {\sqrt {c_1 x}}{c_1}\right )+1\right ) x}{2 \operatorname {LambertW}\left (\frac {\sqrt {c_1 x}}{c_1}\right )^{2}} \\ y &= \frac {\left (2 \operatorname {LambertW}\left (-\frac {\sqrt {c_1 x}}{c_1}\right )^{2}+2 \operatorname {LambertW}\left (-\frac {\sqrt {c_1 x}}{c_1}\right )+1\right ) x}{2 \operatorname {LambertW}\left (-\frac {\sqrt {c_1 x}}{c_1}\right )^{2}} \\ \end{align*}
Mathematica. Time used: 0.557 (sec). Leaf size: 97
ode=x - 2*y[x] + x*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\frac {2}{\sqrt {\frac {2 y(x)}{x}-1}-1}-2 \log \left (\sqrt {\frac {2 y(x)}{x}-1}-1\right )&=\log (x)+c_1,y(x)\right ] \\ \text {Solve}\left [\frac {2}{\sqrt {\frac {2 y(x)}{x}-1}+1}+2 \log \left (\sqrt {\frac {2 y(x)}{x}-1}+1\right )&=-\log (x)+c_1,y(x)\right ] \\ \end{align*}
Sympy. Time used: 6.882 (sec). Leaf size: 75
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**2 + x - 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \log {\left (x \right )} = C_{1} - \log {\left (- \sqrt {-1 + \frac {2 y{\left (x \right )}}{x}} + \frac {y{\left (x \right )}}{x} \right )} + \frac {2}{\sqrt {-1 + \frac {2 y{\left (x \right )}}{x}} - 1}, \ \log {\left (x \right )} = C_{1} - \log {\left (\sqrt {-1 + \frac {2 y{\left (x \right )}}{x}} + \frac {y{\left (x \right )}}{x} \right )} - \frac {2}{\sqrt {-1 + \frac {2 y{\left (x \right )}}{x}} + 1}\right ] \]