60.1.449 problem 462

Internal problem ID [10463]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 462
Date solved : Sunday, March 30, 2025 at 04:50:40 PM
CAS classification : [_quadrature]

\begin{align*} y {y^{\prime }}^{2}-1&=0 \end{align*}

Maple. Time used: 0.029 (sec). Leaf size: 27
ode:=y(x)*diff(y(x),x)^2-1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} x -\frac {2 y^{{3}/{2}}}{3}-c_1 &= 0 \\ x +\frac {2 y^{{3}/{2}}}{3}-c_1 &= 0 \\ \end{align*}
Mathematica. Time used: 0.032 (sec). Leaf size: 43
ode=-1 + y[x]*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \left (\frac {3}{2}\right )^{2/3} (-x+c_1){}^{2/3} \\ y(x)\to \left (\frac {3}{2}\right )^{2/3} (x+c_1){}^{2/3} \\ \end{align*}
Sympy. Time used: 16.107 (sec). Leaf size: 160
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)*Derivative(y(x), x)**2 - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\sqrt [3]{2} \cdot 3^{\frac {2}{3}} \left (C_{1} + x\right )^{\frac {2}{3}}}{2}, \ y{\left (x \right )} = \frac {\sqrt [3]{2} \left (- 3^{\frac {2}{3}} + 3 \sqrt [6]{3} i\right ) \left (C_{1} + x\right )^{\frac {2}{3}}}{4}, \ y{\left (x \right )} = \frac {\sqrt [3]{2} \left (- 3^{\frac {2}{3}} - 3 \sqrt [6]{3} i\right ) \left (C_{1} + x\right )^{\frac {2}{3}}}{4}, \ y{\left (x \right )} = \frac {\sqrt [3]{2} \cdot 3^{\frac {2}{3}} \left (C_{1} + x\right )^{\frac {2}{3}}}{2}, \ y{\left (x \right )} = \frac {\sqrt [3]{2} \left (- 3^{\frac {2}{3}} + 3 \sqrt [6]{3} i\right ) \left (C_{1} + x\right )^{\frac {2}{3}}}{4}, \ y{\left (x \right )} = \frac {\sqrt [3]{2} \left (- 3^{\frac {2}{3}} - 3 \sqrt [6]{3} i\right ) \left (C_{1} + x\right )^{\frac {2}{3}}}{4}\right ] \]