Internal
problem
ID
[131]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.6
(substitution
and
exact
equations).
Problems
at
page
72
Problem
number
:
27
Date
solved
:
Saturday, March 29, 2025 at 04:34:59 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Bernoulli]
ode:=3*x*y(x)^2*diff(y(x),x) = 3*x^4+y(x)^3; dsolve(ode,y(x), singsol=all);
ode=3*x*y[x]^2*D[y[x],x]==3*x^4+y[x]^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-3*x**4 + 3*x*y(x)**2*Derivative(y(x), x) - y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)