60.1.554 problem 567

Internal problem ID [10568]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 567
Date solved : Sunday, March 30, 2025 at 06:07:46 PM
CAS classification : [_quadrature]

\begin{align*} a \cos \left (y^{\prime }\right )+b y^{\prime }+x&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 18
ode:=a*cos(diff(y(x),x))+b*diff(y(x),x)+x = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \int \operatorname {RootOf}\left (a \cos \left (\textit {\_Z} \right )+\textit {\_Z} b +x \right )d x +c_1 \]
Mathematica. Time used: 0.043 (sec). Leaf size: 42
ode=x + a*Cos[D[y[x],x]] + b*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}[\{y(x)=\int K[1] (a \sin (K[1])-b) \, dK[1]+c_1,x=-a \cos (K[1])-b K[1]\},\{y(x),K[1]\}] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*cos(Derivative(y(x), x)) + b*Derivative(y(x), x) + x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : multiple generators [_X0, cos(_X0)] 
No algorithms are implemented to solve equation _X0*b + a*cos(_X0) + x