60.2.13 problem 589

Internal problem ID [10587]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 589
Date solved : Sunday, March 30, 2025 at 06:08:48 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} y^{\prime }&=\frac {F \left (-\frac {-1+y \ln \left (x \right )}{y}\right ) y^{2}}{x} \end{align*}

Maple. Time used: 0.027 (sec). Leaf size: 51
ode:=diff(y(x),x) = F(-(-1+y(x)*ln(x))/y(x))*y(x)^2/x; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {1}{\ln \left (x \right )+\operatorname {RootOf}\left (F \left (\textit {\_Z} \right )+1\right )} \\ \int _{\textit {\_b}}^{y}\frac {1}{\left (F \left (\frac {1-\textit {\_a} \ln \left (x \right )}{\textit {\_a}}\right )+1\right ) \textit {\_a}^{2}}d \textit {\_a} -\ln \left (x \right )-c_1 &= 0 \\ \end{align*}
Mathematica. Time used: 0.203 (sec). Leaf size: 245
ode=D[y[x],x] == (F[(1 - Log[x]*y[x])/y[x]]*y[x]^2)/x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\left (\frac {1}{\left (-F\left (\frac {1-K[2] \log (x)}{K[2]}\right )-1\right ) K[2]^2}-\int _1^x\left (\frac {\left (-\frac {\log (K[1])}{K[2]}-\frac {1-K[2] \log (K[1])}{K[2]^2}\right ) F''\left (\frac {1-K[2] \log (K[1])}{K[2]}\right )}{\left (F\left (\frac {1-K[2] \log (K[1])}{K[2]}\right )+1\right ) K[1]}-\frac {F\left (\frac {1-K[2] \log (K[1])}{K[2]}\right ) \left (-\frac {\log (K[1])}{K[2]}-\frac {1-K[2] \log (K[1])}{K[2]^2}\right ) F''\left (\frac {1-K[2] \log (K[1])}{K[2]}\right )}{\left (F\left (\frac {1-K[2] \log (K[1])}{K[2]}\right )+1\right )^2 K[1]}\right )dK[1]\right )dK[2]+\int _1^x\frac {F\left (\frac {1-\log (K[1]) y(x)}{y(x)}\right )}{\left (F\left (\frac {1-\log (K[1]) y(x)}{y(x)}\right )+1\right ) K[1]}dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
F = Function("F") 
ode = Eq(Derivative(y(x), x) - F((-y(x)*log(x) + 1)/y(x))*y(x)**2/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - F(-log(x) + 1/y(x))*y(x)**2/x cannot be solved by the factorable group method